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 ON THE CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS

 By Fasheng Sun1, Min-Qian Liu2 and Peter Z. G. Qian3

 Northeast Normal University ; Nankai University
 and University of Wisconsin-Madison

 Nested space-filling designs are nested designs with attractive low-
 dimensional stratification. Such designs are gaining popularity in statistics,
 applied mathematics and engineering. Their applications include multi-
 fidelity computer models, stochastic optimization problems, multi-level fit-
 ting of nonparametric functions, and linking parameters. We propose meth-
 ods for constructing several new classes of nested space-filling designs. These
 methods are based on a new group projection and other algebraic techniques.
 The constructed designs can accommodate a nested structure with an arbi-
 trary number of layers and are more flexible in run size than the existing
 families of nested space-filling designs. As a byproduct, the proposed meth-
 ods can also be used to obtain sliced space-filling designs that are appealing
 for conducting computer experiments with both qualitative and quantitative
 factors.

 1. Introduction. Computer experiments are widely used in science and en-
 gineering [Fang, Li and Sudjianto (2006), Santner, Williams and Notz (2003)].
 A large computer program can often be run with multiple fidelities. Qian (2009),
 Qian, Tang and Wu (2009) and Qian, Ai and Wu (2009) introduced the concept of
 nested space-filing design (NSFD) for running computer codes with two levels of
 accuracy. A pair of NSFD L' C ¿2 are two nested designs with the small design
 used for the more accurate but more expensive code and the large design used for
 the less accurate but cheaper code. These designs have following properties:

 Economy : the number of points in L' is smaller than the number of points in L2;
 Nested relationship : L' is nested within L2, that is, Li C L2;
 Space-filling : the points in both L' and L2 achieve uniformity in low dimensions.

 The nested relationship makes it easier to adjust or calibrate the differences be-
 tween the two sources.
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1 395

 Multi-fidelity simulation modeling has received considerable attention over the
 past few years, especially in the computational fluid dynamics and finite element
 analysis communities where simulation costs are very high. For example, a finite
 element analysis code can be run with varying numbers of mesh sizes, resulting
 in multiple versions with three or more levels of accuracy. Multi-fidelity simula-
 tion modeling is a common practice in engineering. Examples include Dewettinck
 et al. (1999) for simulating a GlattGPC-1 fluidized-bed unit, Choi et al. (2008)
 for an aircraft design application and Molina-Cristóbal et al. (2010) for a sub-
 marine propulsion system application, among others. Specifically in Dewettinck
 et al. (1999), they reported a physical experiment and several associated com-
 puter models for predicting the steady-state thermodynamic operation point of a
 GlattGPC-1 fluidized-bed unit. One physical model (lá.exp) and three computer
 models (72,3, 72,2, 72, 1) are considered. Model 72,3, which includes adjustments
 for heat losses and inlet airflow, is the most accurate (i.e., producing the closest
 response to 72,exp)- Model 72,2 includes only the adjustment for heat losses, thus
 is the medium accurate. While model 72, 1 does not adjust for heat losses or inlet
 airflow and is thus the least accurate. For such experiments, it is desirable to run
 a multi-layer experiment using NSFDs with three or more layers, which makes it
 easier to model the systematic differences among the models and implies more ob-
 servations are taken for less accurate experiments [cf., Haaland and Qian (2010)].

 However, NSFDs with more than two layers cannot be constructed by using the
 methods in Qian, Tang and Wu (2009) and Qian, Ai and Wu (2009). The technical
 reason is the modulus projection used in Qian, Tang and Wu (2009) cannot be ex-
 tended to covering more than two layers. To overcome this limitation, we present
 a new group-to-group projection, called the subgroup projection, in this paper and
 then construct several new classes of NSFDs that can accommodate nesting with
 an arbitrary number of layers and are more flexible in run size than existing de-
 signs of this type. The subgroup projection is based on a new decomposition of
 Galois fields. As far as we are aware, it is also new in algebra and may have other
 algebraic applications beyond design of experiments. Some families of NSFDs
 with more than two layers can be constructed from ( t , s) -sequences with an in-
 finite number of elements [Haaland and Qian (2010)]. In contrast, the proposed
 construction here is simpler and only involves a finite number of points. The con-
 structed designs here can be used for multi-level fitting of nonparametric functions
 [Fasshauer (2007), Floater and Iske (1996), Haaland and Qian (2011)] and link-
 ing parameters in engineering [Husslage et al. (2003)], all of which involve nested
 designs with more than two layers.

 The proposed constructions also give new families of sliced space-filling de-
 signs (SSFDs) which can be used to conduct computer experiments with both
 qualitative and quantitative factors [Han et al. (2009), Qian, Wu and Wu (2008),
 Zhou, Qian and Zhou (2011)]. Such computer experiments are often encountered
 in practice, though most literature on computer experiments assumes that all the
 input variables are quantitative. For example, Schmidt, Cruz and Iyengar (2005)
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 1 396 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 described a data center computer experiment which involves qualitative factors
 (such as diffuser location and hot-air return-vent location) and quantitative factors
 (such as rack power and diffuser flow rate). For conducting such an experiment,
 Qian and Wu (2009) proposed to use an SSFD, say 5 = (51, , S'v)', with each
 slice S¡ being associated with a level combination of the qualitative factors. Here,
 when collapsed over the qualitative levels, the points of the quantitative factors
 achieve attractive stratification and at any qualitative level, the values of the quan-
 titative factors are spread uniformly in a low-dimensional space. An SSFD can
 also be used to run a computer model in batches and conduct multiple computer
 models [Qian (2012), Williams, Morris and Santner (2009)]. Note that the subfield
 projection used in Qian and Wu (2009) for constructing SSFDs is a special case
 of the subgroup projection proposed in this paper, thus more SSFDs can be con-
 structed here. Moreover, the SSFDs presented in this paper can be used to conduct
 computer experiments with asymmetric qualitative factors.

 This paper is organized as follows. Section 2 presents some useful definitions
 and notation. Section 3 introduces a decomposition method of Galois fields and a
 new algebraic projection, which play a critical role in the proposed construction
 methods. Sections 4-6 provide new methods for constructing nested orthogonal
 arrays, sliced orthogonal arrays and nested difference matrices, along with illus-
 trative examples. Procedures for generating NSFDs from nested orthogonal arrays
 and SSFDs from sliced orthogonal arrays are presented in Section 7. Comparisons
 with existing work and concluding remarks are given in Section 8.

 2. Definitions and notation. Latin hypercube and orthogonal array-based
 Latin hypercube. A Latin hypercube L = (/,y ) with n runs and m factors is an
 n X m matrix in which each column is a permutation of 0, . . . , n - 1 [McKay,
 Beckman and Conover (1979)]. Let A be an orthogonal array OA(n, m, s, t) with
 levels 0, . . . , s - 1 [Hedayat, Sloane and Stufken (1999)]. If we replace the q =
 n/s zeros in each column of A by a permutation of 0, . . . , q - 1, replace the q
 ones by a permutation of q, . . . , 2q - 1, and so on, we obtain an orthogonal array
 (OA)-based Latin hypercube that achieves stratification up to t dimensions [Tang
 (1993)].

 Sliced orthogonal array. Let A be an OA{ni, m, si, t). Suppose that the rows
 of A can be partitioned into v subarrays of n' rows, denoted by A' , . . . , Av. Fur-
 ther suppose that there is a projection p that collapses the S2 levels of A into s'
 levels with S2 > si and A,- becomes an OA(n',m,s',t) after level-collapsing ac-
 cording to p. Then A, or more precisely (Ai, . . . , Av; p), is a sliced orthogonal
 array (SOA) [Qian and Wu (2009)].

 Nested orthogonal array and nested difference matrix. Qian, Tang and Wu
 (2009) and Qian, Ai and Wu (2009) introduced the definition of nested orthog-
 onal array with two layers, we now extend the definition to a more general case.
 Suppose A/ is an OA(n¡,m, s¡, t) and pj for j = 1, . . . , I are a series of pro-
 jections satisfying that p¡(a) = Piiß) implies Pj(a) = Pj(ß) for j < i. Then
 (Ai, . . . , A/; pi, . . . , pi) is called a nested orthogonal array (NOA) with I lay-
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1397

 ers, denoted by NOA{A', A¡' p', pi), if:

 (i) A,_i is nested within A¡ for 2 < i < /, that is, A' c A2 C • • • C A/;
 (ii) Pj(Ai) is an OA(n¡,m, Sj,t ) for j < i,

 where n' < /12 < • • • < «/ and s' < si < • • ■ < s¡. Given a difference matrix
 D(r¡, c, s¡) [Bose and Bush (1952)], the concept of nested difference matrix
 (NDM) with I layers, denoted by NDM(D' , . . . , D¡; p' , . . . , p¡ ), is defined in a
 similar fashion.

 Note that the concept of NOA here is different from the one introduced in Muk-
 eijee, Qian and Wu (2008), since the A¡ for i = 1, - 1 here are not nec-
 essarily OAs before the level-collapsing but can still achieve stratification on any
 two dimensions. This makes the construction more flexible. For example, Fig-
 ure 1 presents the bivariate projections of an OA( 64, 5, 8, 2) with levels 0, . . . , 7,

 Fig. 1. Bivariate projections of A' and A2 with A' C A2, where the points labeled with both "o"
 and "• " correspond to A2, and those labeled with "o" correspond to A'.
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 1 398 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 denoted by A2, and a 16-run subset of A 2, denoted by A', where the points la-
 beled with both "o" and correspond to At, and those labeled with "o" cor-
 respond to Ai (for saving space, only the bivariate projections of the first three
 dimensions are presented here). Obviously, A' is not an OA, but it becomes an
 OA (16, 5, 4, 2) with levels 0,2,4,6 after the level-collapsing according to the
 projection {0, 1} - >- 0, {2, 3} -»• 2, {4, 5} ->• 4, {6, 7} ->■ 6, and the points of A'
 achieve stratification on the 4 x 4 grids in any two dimensions. According to
 Theorem 1 of Mukerjee, Qian and Wu (2008), if an OA(N, 5, 8, 2) contains an
 ÖA(16, 5, 4, 2), then N must satisfy N > 96, but here the larger OA only has
 N = 64 runs if the projection is used to get the smaller OA with 16 runs. Thus, in
 the present paper, suitable projections are critical for the definition and construc-
 tion of NOAs, and the use of projections makes the construction more flexible.

 Consider two matrices A = ( a¡j ) = (a'

 (b', bv) of order u xv, respectively. Their Kronecker sum is an ru x sv matrix

 (1 ) A © B = (1 a¡j J + B) where 7 is the m x u matrix of ones.

 For .s = i', here we introduce an operation called column-wise Kronecker sum of A
 and B, given as

 (2) A ©c B = (a' © b' , . . . , as © bs),

 where © is defined in (1). These two operations will be used to construct NOAs,
 SOAs and NDMs in the following sections.

 Generator matrix and Rao-Hamming construction. Let s = pu, GF(p ) ç Fi ç
 GF(s ) with 'F''=m, where p is a prime number and |Fi | denotes the cardinality

 of set Fi , and let Zj be a column vector of length k with the y'th component being
 one and all the others being zero, j = 1, . . . , k. We then obtain a kx (mk - 1 )/{m -
 1) matrix Z' by collecting all the nonzero column vectors given by

 (3) z = cizí H

 and the first nonzero entry in (ci, . . . , Ck) is one. We call Z' a generator matrix
 over Fi with k independent columns. Let Z be the generator matrix over GF(s)
 with k independent columns and take all linear combinations of the row vectors
 of Z with coefficients from GF(s), we then obtain an OA(sk, (sk - l)/(s - 1), s, 2).
 This construction is called the Rao-Hamming construction [Hedayat, Sloane and
 Stufken (1999), Chapter 3].
 Lemma 1 follows from the Rao-Hamming construction.

 Lemma 1 . Let s be a prime power and let A be an sk x k matrix whose
 rows consist of all the vectors (*1 , . . . , Xk), x¡ e GF(s), i - ' k, then AZ is
 an OA(sk, (sk - 1 )/(s - 1), s, 2), where Z is a generator matrix over GF(s) with
 k independent columns.
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1 399

 3. A new subgroup projection. We now introduce a new projection which
 will play a key role in the proposed construction methods in the subsequent sec-
 tions. Moreover, this new projection may have other applications in Algebra. We
 first present a lemma about the decomposition of Galois fields.

 3.1. Decomposition of Galois fields. For a finite set A of size |A|, put its ele-
 ments in an column vector Va with zero being placed as the first entry if included.
 The following lemma paves the way for a new decomposition of Galois fields.

 LEMMA 2. Suppose that G is a finite Abelian group with 'G'=n. Then there
 exists a decomposition ofn = p'l x • • • x p'¡ and cyclic groups G, with ' G , | = p'{
 satisfying Va = Vq , © • • • © Vc¡, where p, is a prime, G, C G and G, fi G¡ = {0}
 fori ± j, i, j = 1, ...,/.

 This lemma is a direct result of the fundamental theorem of finite Abelian group

 which states that any finite Abelian group can be decomposed as a direct sum
 of cyclic subgroups of prime power order [cf. Herstein (1996), Theorem 2.10.3].
 Based on Lemma 2, we have the following result.

 LEMMA 3. Suppose F3 is a Galois field GF(p "3) and F' , Fi are subgroups
 of Ft, under operation "+ If F' is a subgroup of /*2 under operation "+ then
 there exists a subgroup T of Fļ under operation "+" satisfying Vy2 = V7 /., © Vj.

 Proof. Suppose IF2I = pUl. By Lemma 2, there exists a decomposition of
 pu 2 = pt 1 x . • • x p'1 and cyclic groups G,- satisfying Vf2 - Vg, © • • • © Vg¡,
 where |G, | = p'1 , G, c F2 and G, fi G j = {0} for i, j = 1 , . . . , /, i ^ j. Since the
 characteristic of F3 is the prime number p, I = «2 and /, = 1 for i = 1 , . . . , I. That

 is, V f 2 = Vg, © • • • © Vg„2, and |G, | = p, i - 1, . . . , «2- As F' is a subgroup of
 F2 under operation "+", without loss of generality, write Vf, = Ve, © • • • © VqU1 ,
 where «i < «2- Let Vf = Vgh.+, © • • • © Vg„2, where T is a subgroup of Fi under
 operation "+", and Vf2 = Vf,' © Vj. □

 We now introduce a new decomposition of Galois fields, serving as a basis
 for a new group projection. Unless otherwise specified, assume hereinafter F¡ =
 GF(s¡), F¡- 1 is a subgroup of F, under operation "+" for / = 2, . . . , I, and F, has

 s¡ = pUi elements for i - 1, . . . , I. Then by Lemma 3, there exist Tf s satisfying
 that

 (4) Vf¡ = Vr, © Vj2 © • • • © Vt¡ , i = 1 , . . . , I,

 where T'= F' and 7) is a subgroup of F -; for j = 2, . . . , /.
 We introduce Algorithm 1 to perform the decomposition in (4).
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 1 400 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Algorithm 1 . Step 1 . From F' , obtain

 (5) VTļ = VFļ,

 where the first entry of VV, is zero.
 Step 2. For i = 2,..., I, from F,_i c F¡ and Lemma 3, obtain T, as a subgroup

 of F¡ under operation "+" such that the direct sum of F¡-' and T¡ is F¡. That is,

 (6) VFi = VFi_x®VTi for/ = 2,...,/.

 Step 3. Combining (5) and (6) gives the decomposition in (4).

 3.2. A new subgroup projection. Using the above decomposition, we are now
 ready to propose a new group-to-group projection, which will play a key role in our
 construction of NSFDs. As far as we are aware, this projection is new in algebra
 and may have applications in other algebraic problems.

 In (4), any y e F¡ can be uniquely expressed as

 (7) Y = ß i H

 Using (4) and (7), define a projection p, : F¡ - > F¡ as

 (8) Pi (y) = Pi(ß i H

 which maps an element in F¡ to its counterpart in the subgroup F¡, i = 1 ,...,/.
 We call this projection the subgroup projection.

 LEMMA 4. For the subgroup projection and y' , y2, y € F¡, we have :

 O) pí (yi + Y2) = pí (ki ) + Pi (n) ;
 (ii) Pi(Pjiy)) = Pminļi.7 ) {y ) S ^minļi.v'ļ j
 (iii) Pi (y' ) = Pi (Y2) implies pj{yx) = p j (y2) for j <i'

 Is/A;' (iv) pi(VF,) = VFi( 8)

 where 1„ denotes the nth unity vector.

 Lemma 5 gives some desirable properties of the subgroup projection.

 LEMMA 5. (i ) If D is a D{r, c, Sļ) based on F¡, then Pj(D) - ( Pj(duv )) is a
 D{r, c, Sj) based on Fj for 1 < j <i < I.

 (ii) If A is an OA(n,m,s¡,t ) based on F¡, then Pj(A ) = ( Pj(auv )) is an
 OA{n, m, Sj, t) based on Fj for 1 < j <i < I.

 The subgroup projection works under a subgroup structure and is more general
 than the subfield projection introduced in Qian and Wu (2009) and the modulus
 projection in Qian, Tang and Wu (2009). The modulus projection, denote by <p,
 satisfies Lemma 5, but does not satisfy Lemma 4. Thus, the method in Qian, Tang
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1401

 and Wu (2009) cannot be extended to construct NSFDs with more than two layers.
 For illustration, take F' = GF( 2), F2 = GF( 22) and F3 = GF(23) with irreducible
 polynomials gi (jc) = x + 1, gļ(x ) = x2 + x + 1 and g ļ(x) = x3 + x + 1, respec-
 tively. For any f(x) e F3, <p gives

 92, (f(x)) = f(x), <Pi{f{x)) = fg2(x)(x), <pi(f(x)) = fgl(X)(x),

 where fg(x)(x) denotes the residue of f(x) modulo g(;t). Here, (p2 (x2) - (piix +
 1) = x + 1, but (p'{x2) = 1^0 = (fi' (x + 1), which implies q> does not satisfy
 Lemma 4. The truncation projection used in Qian, Ai and Wu (2009) for con-
 structing NDMs satisfies Lemmas 4 and 5 and is a special form of the subgroup
 projection.

 The subgroup projection will be extended to a more general group structure in
 Section 6.

 4. Construction of NOAs and SOAs using the Rao-Hamming method for
 the case of u¡ < u¡+'. We now present new methods to construct NOAs with
 two or more layers and a sliced structure. Suppose F/ = GF{s¡), F, = {/(x) e
 F¡ I the degree of /(jc) is less than or equal to u¡ - 1}, s¡ = /?"' , for í = 1 , , I,
 and Uļ-ļ < Uj for i = 2, . . . , I. Then F,_i is a subgroup of F, under operation "+"
 for i = 2, . . . , /, and (4), (7) and Lemma 4 hold.

 Algorithm 2. Step 1. Let G, = F¡ x • • • x F, = {(yi , . . . , yk)'Yj e Fi - i =
 1, . . . , k}, i = 1, . . . , /. For any elements (yn,. . . , y'k) and (y2i, . . . , yu) e G¡,
 define (yn,---, m) + (m . • • • > Y2k) = (Xi i + K21 , • • • , m + Y2k), where the op-
 eration "+" is the addition on F, .

 Step 2. Let W¡ = {(y', . . . , Yk)'Yj e T¡, j = 1, . . . , &}, which can be expressed as

 /s ^J,_] }, i = 1, . . . , I, where is the kth zero vector and io = 1-

 Step 3. Suppose G' = {01, , iļx, . . . , }. Define an x k matrix H' to be

 Hi = (0k, ii -i ,)'• For i = 2, , /, let i, -i

 (9) Hi = (///_!, [ß' ®c Hi-i]', ©c Hi- 1]')', i=2,...,/,
 where ©c is defined in (2). Obtain

 (10) H¡ = (H¡, [a' ®c Hi]', . . . , ©c Ht]')', i = 1, ...,/- 1,

 where a'j = (aljV a'jk ) e G¡ ' G¡ for j = 1, . . . , (s¡/si)k - 1.
 Step 4. Let

 A¡ = HļC for i = 1 , . . . , /,

 y) =cijC for i = 1, ...,/ - 1, j = 1, ... , (s¡/si)k - 1,

 i) = ß)C for i = 2, ...,/,; = 1, ... , (ü/íí-i)* - 1, and

 r' = Aj([(l - 1 )sf + 1 ]:lsf) for i = 1, ...,/- 1, / = 1, ... , (si/s¡)k,
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 1402 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 where C is a generator matrix over GF(p ) with k independent columns, and for
 any matrix A, A(u : v) denotes its submatrix consisting of rows u to v.

 THEOREM 1 . For the Ai ' s and rļ 's constructed in Algorithm 2, and pi 's de-
 fined in Section 3.2, we have :

 (i) A] = (A'¡, (y' ©c AiY, ( y's¡/s¡)k_x ©C Ai)')', for i = 1, 1,
 Aļ = (A(_j, (¿i ©c A¡- i) , . . . , ©c A¡- i) ) , for i = 2, . . . , I .

 (ii) (Ai, . . . , A/; pi, . . . , pi) is an NOA with I layers , where Pj(Ai) is an
 OA(sf , (pk - 1 )/(p - 1 ),Sj, 2), for 1 < j < i < /;

 (iii) (rļ , . . . , r[Sļ/Si)k ; Pj) is an SOA, for 1 < j < i < I - 1.

 Proof, (i) It follows from the expressions of HC s in (9) and (10), and the
 definition of A¡ .

 (ii) From Lemmas 1 and 5, Pj(A¡) is an OA(sf, (pk - 1 )/{p - 1), sj, 2) for
 j < i , and thus (Ai , . . . , A¡; p' , . . . , p¡) is an NOA with I layers;

 (iii) Since pj{y' ©c A¡) = Pj(y¡) ©c Pj(A¡), then pj{y' ©c A¡) is an
 OA(Sj, (pk - 1 )/(p - l), s j, 2) that can be obtained by permuting the levels of
 each factor in pj(A¡). Note that Tļ = A¡ and T' - y'_' ©c A¡ for / > 1, and thus

 (r; , . . . , r1Jř/í.)t ; pj) is an SOA, for 1 < j < i < I - 1 . □

 Remark 1. If k > 2 in Theorem 1, we can choose some columns from the

 generator matrix C to form a new matrix C* such that the strength t of A¡ = H¡ C*
 is greater than 2. For k = 3 and p = 2, if we take

 /1 0 0 1' /1 0 0 1 0 1 1'

 C* = ( 0 1 0 1 ) from C=ļ0 1 0 1 1 0 II,
 '0 0 1 1/ '0 0 10 111/

 then A i - H¡C* has strength 3. Based on such C*'s and A/'s, the NSFDs and
 SSFDs generated in Section 7 will achieve stratification up to t > 2 dimensions.

 Example 1. Let s' =2,S2 = 22,sļ = 23, Fi = {0, 1}, F2 = {0, ',x,x +
 1} and F3 = GF{ 23) = {0,l,x,x + l,x2,x2 + l,x2 + x,x2 + x + 1}. Here, F¡
 is a subgroup of F,+i under the operation "+", / = 1,2. From (4),

 ļ V>2 = Viļ © Vr2,
 I Vp3 = VTi © Vt2 © Vr3,

 with Vti = (0, 1)', Vt2 = (0, x)' and VV3 = (0, x2)'. For k = 2,

 Wi = {(0,0), (0,1), (1,0), (1,1)},

 W2 = {(0,0),(0,JC),(jc,0),(jc,x)},
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1 403

 W3 = {(0,0),(0,x2),(X2,0),(X2,X2)},
 0' / Hi ' H2 '

 „ _ 0 1 w _ (0,jc)©cffi , „ _ (0 ,x2)®cH2
 1 _ 10' 2 _ (x, 0) ©c H' an 3 _ (jc2,0)©c//2

 '1 1/ '{x,x)®c H'J '(x2,x2)®c H2J
 Let C be a generator matrix over GF( 2) with two independent columns given by

 C = C V oil ° ')■ ) V oil )

 Table 1 gives A ' , A2, A3 and T' for i = 1 , 2 and 1 = 1,..., 43-' .
 Suppose that p' , p2 and pi are defined in (8) given by

 y 0 1 x jc + l Jc 2 jc2 + 1 x2 + x x2+x + l
 /01 (y) 0 1 Õ Ī Õ Ī Õ Ī ~~
 /02 (y) Oljcx + lO 1 x + 1
 Piiy) 0 1 X X+Ì X2 X2+l X2 + X x2+x + '

 Note that:

 (i) Pj(A¡) is an OA(4l , 3, 2-* , 2) for 1 < j < i < 3, and thus (Aj, A2, Ay, p',
 p2, pļ) is an NOA with three layers;

 (ii) pj (r; ) is an OA (4' , 3, 2; , 2), and thus (Tļ , . . . , r^3_, ; pj) is an SOA, where

 r; = A3([4'(/ - 1) + 1] -AH), for I = 1, ... , 43-' and 1 < j < i < 2.

 5. Construction of NOAs, SOAs and NDMs for the case of «,• |«j+i. Now
 assume u¡ < u¡+' and m, is a factor of w,+i, that is, Qian and Ai (2010)
 presented some constructions of NOAs with two layers for this case. Here, we
 provide new constructions for NOAs with two or more layers and a sliced structure,

 which are more general than those in Qian and Ai (2010).

 5.1. Construction of NOAs and SOAs using the Rao-Hamming and Bush's
 methods.

 THEOREM 2. By replacing GF(p ) for generating the generator matrix C in
 Step 4 of Algorithm 2 with F' = GF{s'), we obtain:

 (i) A, = (A;,(^ ®c A/)'

 Ai = (A;_p (i'i ©c A, •_!)', . . . , (S{s./s¡1)k^ ©c A/-!)')', fori = 2,..., /;
 (ii) (A], . . . , A/; p', . . . , p¡) is an NOA with I layers, where Pj(A¡) is an

 OA(s¡ , (if - l)/(si - 1), sj, 2), for 1 <j<i<ī;
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 1404 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Table 1

 The matrix A3 in Example 1, where A' = A3O :4), A2 = A3O : 16), rj = A3([4(/ - 1) -1-1] : 4/)

 for / = 1, . . . , 16, and rf = A3([16(/ - 1) + 1] : 16 1) for / = 1, . . . , 4

 Row x' X2 *3 Row x' X2 JC3

 1 0 0 0 33 jc2 0 X2
 2 0 1 1 34 je2 1 JC2+1
 3 10 1 35 jc2+1 0 JC2+1
 4 1 1 0 36 jc2+1 1 jc2
 5 0 je jc 37 jc2 jc jc2+jc
 6 0 jc+1 jc+1 38 jc2 jc+1 jc2+jc+1
 7 1 jc jc+1 39 jc2+1 jc jc2+jc+1
 8 1 jc+1 jc 40 jc2+1 jc+1 jc2+jc
 9 jc O X 41 jc2+jc 0 jc2+jc
 10 jc 1 jc+1 42 jc2+jc 1 jc2+jc+1
 11 jc+1 0 jc+1 43 jc2+jc+1 0 jc2+jc+1
 12 jc+1 1 jc 44 jc2+jc+1 1 jc2+jc
 13 jc jc 0 45 jc2+jc jc X2
 14 jc jc+1 1 46 jc2+jc jc+1 jc2+1
 15 jc+1 jc 1 47 jc2+jc+1 jc jc2+1
 16 jc+1 jc+1 0 48 jc2+jc+1 jc+1 jc2
 17 0 jc2 jc2 49 jc2 jc2 0
 18 0 jc2+1 jc2+1 50 jc2 jc2+1 1
 19 1 jc2 jc2+1 51 jc2+1 jc2 1
 20 1 jc2+1 jc2 52 jc2+1 jc2+1 0
 21 0 jc2+jc jc2+jc 53 jc2 jc2+jc jc
 22 0 jc2+jc+1 jc2+jc+1 54 jc2 jc2+jc+1 jc+1
 23 1 jc2+jc jc2+jc+1 55 jc2+1 jc2+jc jc+1
 24 1 jc2+jc+1 jc2+jc 56 jc2+1 jc2+jc+1 jc
 25 jc jc2 jc2+jc 57 jc2+jc jc2 jc
 26 jc jc2+1 jc2+jc+1 58 jc2+jc jc2+1 jc+1
 27 jc+1 jc2 jc2+jc+1 59 jc2+jc+1 jc2 x+'
 28 jc+1 jc2+1 jc2+jc 60 jc2+jc+1 jc2+1 jc
 29 jc jc2+jc jc2 61 jc2+jc jc2+jc 0
 30 jc jc2+jc+1 jc2+1 62 jc2+jc jc2+jc+1 1
 31 jc+1 jc2+jc jc2+1 63 jc2+jc+1 x2+x 1
 32 jc+1 jc2+jc+1 jc2 64 jc2+jc+1 x2+x+l 0

 (iii) (rj

 Remark 2. Similarly, as discussed in Remark l, if k > 2 in Theorem 2, then
 we can choose some columns of the generator matrix C to form a new matrix C*
 such that A i = H jC* has a strength greater than 2.
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1405

 For si > k - 1 and F' = {vi , . . . , Vs, }, if we replace the generator matrix C in
 Theorem 2 by the following matrix:

 /1 1 ••• 1 0'

 vi V2 ... Ví, 0
 »1 v¡ ■■■ vi 0

 (11) V= : : : : : '
 v'~2 v'~2 • • • v*-2 0
 I»;-1 «*-' ... vf-' J

 then we can generate new NOAs and SOAs with strength k based on Bush's
 method [Hedayat, Sloane and Stufken (1999), Chapter 3]. For most cases, k >2,
 and the related NSFDs and SSFDs will achieve stratification up to k > 2 dimen-
 sions.

 THEOREM 3. If in Theorem 2, C is replaced by the V in (11), then :

 (i) Aļ is an OA(sf, si + 1 ,s¡,k),for i* = 1 ;

 (ii) A, = (A'¡, (y' ®c A,-)', . . . , (?;„/,.)*_! ©c Ai)')', for i = 1, 1,
 Ai = (A;_p (8' ®c Ai-iY, . . . , ©C Ai-iYY, fori = 2,..., /;
 (iii) (A', , A¡' p', , pi) is an NOA with I layers, where Pj(A¡) is an

 OA(sf, s' + 1 ,Sj,k),for 1 <j<i<I'
 (iv) (rļ, . . . , T'si/si)k- pj) is an SOA, for 1 < j < i < I - 1.

 5.2. Construction of NOAs and SOAs from NDMs. We now propose a new
 approach for constructing NOAs and SOAs from NDMs. Theorem 4 follows from
 Lemmas 4 and 5.

 THEOREM 4. Let A be an OA(n,m, s¡, 2), and

 V = V77 © Viy., © • • • ® Vr„ D = VV^,

 A/ = D([(l - I)5' + fori = 1 ,...,si/si,i - 1, 1,

 A (i, k) = ((A 'j)', . . . , (Aí)')' fork= 1, . . . , s,/si - 1, i = 1, ...,/- 1.

 Then for 1 < j < i < /, k = 1, . . . , s¡/s¡ - 1 and 1 = 1,..., s¡/s¡, we have :

 (i) D is a D(sj , s', Sļ), Aj is a D(s¡, s',s¡), and A © D is an OA(ns¡ ,ms',
 s/,2);

 (ii) pj{ A}) is a D(si,s',sj) based on Fj, pj(A(i,k)) is a D(ks¡,s',sj)
 based on Fj, (A (i,k), D;pj,p¡) is an NDM with two layers, and (A¡,...,
 A ļ 1 , D; p', . . . , pi) is an NDM with 1 layers',
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 1 406 F. SUN, M.-Q. LIU AND P. Z. G. QI AN

 (iii) pj(A © Aj) is an OA{nsi,ms',Sj, 2), (A © Aj, . . . , A © Aļ//i;; pj) is
 an SOA, ( A © A(i, k ), A © D' pj, p¡ ) is an NOA with two layers, and ( A ©
 Aj, . . . , A © a(-1, A © D; pi , . . . , pj) is an NOA with I layers.

 6. Construction of NOAs, SOAs and NDMs with more general numbers
 of levels. The constructed NOAs, SOAs and NDMs so far have prime power
 numbers of levels. We now present constructions with more general numbers of
 levels by using the operation column-wise Kronecker sum defined in (2).

 Let ty - { ý' > • • • > Ýsí } be a group with positive integer s¡ , and

 (12) Í2; = {ýj(o'~l'ýj G ty, &) is an indeterminate, j = 1, . . . , s¡ },

 for i = 1, . . . , /. For any entries 'ļrj2 e ty, there exists y//3 e ty such that
 iJ/Ji + 'ļ/j2 = Ýj3 and define

 tA y, co' _1 +ýj2COl~l =xļfj3Co'~l,

 which implies Í2/ forms a group. Let, for i = 1, . . . , /,

 (13) Fi = {ýi0 + ý^co -'

 and for any elements a = '¡fiQ + xfri , co -'

 Ý*._ , co1 1 6 F¡, define

 « + ß = {Ýlo + Ýh M + ■ ■ ■ + VvX-1) + (Ý*0 + + • • • +

 = (Ýh + Ý*0) + (^/i + ^/*)Û> + • ■ • + (VVi +

 Then F¡ = c(U;=i &l) is a group. Note that F¡ is a subgroup of F¡+ 1 and thus (4)
 and (7) hold, where T¡ = ň, . Now express the projection in (8) as

 Pi(y) = Ýlo + fl'co+
 (14)

 Y = Ýlo + Ýh03 H

 Hence, Lemmas 4 and 5 also hold under this projection.

 6. 1 . Construction of NOAs and SOAs with more general number of levels.
 First, we propose a method for constructing SOAs and NOAs with two layers via
 the column-wise Kronecker sum.

 THEOREM 5. Let Ai be an OA(n¡,m, s¡,t) based on £2, for i = 1,2. Let B =
 Aj (Be A', and denote B = (B[, . . . , B'ni)' , where B¡ = ß([(« - l)ni + 1] : in'), i =
 1, . . . , W2- Then :

 (i) B is an OA(n'n2, m, t) based on Fj = <r(í2i U Œ2);
 (ii) B or (B', ..., B„2' p') is an SOA, where p' ( B¡ ) is an OA(n',m, si, t) for

 i = ',...,n2'
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1 407

 (iii) (Bl , B; pi, P2) is an NOA with two layers, where Bl = (5j, . . . , B[)' and
 p'(Bl) is an OA{ln',m, s',t)forl = 1, . . . , «2 - 1-

 PROOF. Denote A' = (aj, ...,0,1,) = (al(i,j)) and A 2 = (a',...,a2n) =
 C a2(ij ))•

 (i) For any t columns (&,-, ,...,£;,) of B, b¡j = aj. © aj.. Then for any t-
 tuple (a', ...,at) in these columns, aj = y¡ + ßj e F2 with y¡ e ^2- ßj e
 for j = 1,...,/. Since A' is an OA{n',m,s',t) and A2 is an OA(n2,m,S2,t),
 then {ß',...,ßt) occurs n'/s[ times in (aí , . . . , aí ), and occurs
 «2/4 times in (a? , . . . , a?). Thus, {y' + ß' , . . . , yt + ßt ) = (ai , . . . , at) occurs
 n'n2/{s'S2)' times in (è,-, , . . . , b¡t), which implies B is an OA{n'n2,m,s'S2,t)
 based on F2.

 (ii) Note that B¡ = (a2(i, 1), . . . , a2(i, m)) ©c A' and

 Pi(Bi) = (pi(a2(/, 1)), ...,pi ( a2(i , m ))) ©c A'.

 Clearly, pi(B¡) is an OA(n',m, .vi , f) that can be obtained by permuting levels of
 each factor in A ' and (ßi , . . . , B„2 ; p' ) is an SOA.

 (iii) The result in (ii) implies that (Bl, B; p', pi) is an NOA with two layers.

 □

 Example 2. Let Zs = {0, . . . , 5 - 1}, s' = 6, S2 = 2, ^1 = Z(, and ^2 = Z2,
 then = Zf,, Œ2 = {0, co}, Fi = Z^ and F2 - {Z(¡, co + Z(¡}. By (4) and (14),
 y f2 = © Vq2 and

 y € Fi 0 1 2 3 4 5 <u <y + l co + 2 a> + 3 co + 4 co + 5

 My) Õ Ī 2 3 4 5 Õ Ī 2 3 4 5~
 /02 (y) 0 1 2 3 4 5 co co+ 1 co + 2 a> + 3 co + 4 co + 5

 Let A' be an OA(36, 3, 6, 2) based on Í2j and A2 be an OA( 4, 3, 2, 2) based on
 ÍŽ2, which are listed in Table 2.

 Then B = A2 ©c A' - ( B[ , B'4)' satisfies:

 (i) B is an Q4(144, 3, 12, 2) based on F2;

 Table 2

 The arrays A ¡ and A 2 in Example 2

 A' A'

 0000001 1 1 1 1 1222222333333444444555555 0 0 a> u

 012345012345012345012345012345012345 0 co 0 co
 534120321045052431213504140352405213 0 co co 0
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 1408 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 (ii) pi (B¡) is an OA{ 36, 3, 6, 2) for i = 1, ... , 4, that is, ( B' , B 4; p') is an
 SOA;

 (iii) p'{Bl) is an OA(36l, 3, 6, 2), that is, ( Bl , B ; pi, P2) is an NOA with two
 layers, where Bl = ( B[ , B¡)' for I = 1, 2, 3.

 Since an OA(s2, s + 1, s, 2) exists for any prime power s, Theorem 5 gives the
 following corollary.

 COROLLARY 1. For a prime power si and S2 = s2, there exists an SOA

 (Bi, ..., BS2' p), where B = ( B'v ..., B'S2)' is an OA(Sļ, si + 1, S2, 2) and p(Bj)
 is an OA(s2, íi + 1, Ji, 2) for j = 1, . . . , S2.

 Remark 3. For a prime power si and sz = sj, Xu, Haaland and Qian
 (2011) constructed a special SOA (B', ..., BS2; p) based on doubly orthogonal
 Sudoku Latin squares , where B = (B[, B'Sl)' is an OA(Sļ, s',S2, 2), p(Bj) is
 an OA(s2, si, si, 2) and each B¡ has maximum stratification in one-dimension in
 the sense there are .V2 different levels in each column of By, for j = I, ... ,S2.
 In contrast, B¡ in Corollary 1 does not achieve maximum stratification in one-
 dimension, since there are only si different levels in each column. But the SOAs
 obtained here have one more column compared with that of Xu, Haaland and Qian
 (201 1). In addition, more SOAs can be constructed through Theorem 5 for general
 si and S2-

 Next, we generalize Theorem 5 to construct SOAs and NOAs with more than
 two layers.

 COROLLARY 2. Let Ai be an OA(n¡,m, s¡, t ) based on fi/ and B¡ = A¡ ©c
 • • • ©c i4i for i = 1, . . . , I. Suppose Tj = B¡([(1 - l)«i •••«,• + 1] :ln' • • -n¡) for
 1 = 1,..., n,+ 1 • • • n¡ and i = 1 - 1 . Then :

 (i) (Bļ, . . . , B¡' pi, ... , pi) is an NOA with I layers, where Pj(B¡) is an
 OA(n' ■■■ni,m, n/=i ■*/. Ofar 1 < j < i < I;

 (ii) (Pj, . . . , n/ ; Pj) is an SOA for 1 < ; < i < I - 1, where pj( Tļ) is an

 OA(n' •■•ni,m, Y'Ji=lsi,t)forl = I, . . . ,ni+i ■ ■ -n¡.

 6.2. Construction ofNDMs with more general numbers of levels. We present
 a method for constructing NDMs via the column-wise Kronecker sum. Similar to
 Corollary 2, we have the following result.

 THEOREM 6. Let Di be a D (r¡,c, si) based on Í2,- and E¡ = D¡ ©c • • • ©c D'
 for / = 1 . Suppose

 A] =£/([(/ - l)ri ■■■ri + ']:lr' ••• r¡ ),

 for I = 1 , . . . , r,-+ 1 • • • r/ and i = 1 - 1 . Then :
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1409

 (i) (E', . . . , Ej; p', . . . , pi) is an NDM with I layers , where p¡ ( E¡ ) is a

 D{r' •••ri,c, n/=i sl)for 1

 (ii) pj{ A') is a D{r' ••■r¡, c, n/=i for 1 < J < i < / - 1 and I =
 •••«/.

 Example 3. Let Zs = {0, . . . , s - 1}, = 4, s2 = 3, 53 = 2, «l'i = GF( 4),
 ^2 = Z3 and *3 = z2 Then from (12), (13) and (14), = GF(4), ū2 =
 {0, w, 2(o}, = {0, co2}, Fx = GF( 4), F2 = {kco + Fuk e Z3}, F3 = {kco2 +
 i*2,£ e Z2}, and for any y = rļro + + Ý202 € F3, Pj(y) = Vo + ••• +
 Ýj- iû>-/_1 for 7 = 1 , 2, 3, where Ýb e ^¿+1 , ¿> = 0, 1,2. Let

 /0 0 0 '
 (01 /0 0 , 0 ' r » ņ*

 0,= o , J+1 ■ 02= o » 2«, ,
 r» 11 '0 2ft) ú) / ' r» 0 X 11 1 I /
 /0 0 o '

 0 0 o,2
 3~ 0 O)2 0 •

 ^0 co2 co2/
 Then

 £l = Di, E2 = D2®CD', Ej, = ÖS ©c Di ©c Z>i ,

 A/ = £3([4(/ - l) + l] :4Z), l = l, . . . , 12, and

 A2 = £3([12(/ - 1) + 1] : 12/), l = 1, . . . , 4,

 which are listed in Table 3.
 It can be verified that:

 (i) (E', E2, Ey, pi, p2. Pi) is an NDM with three layers, where pj(E¡y s
 are difference matrices: pi(£i) = E', Pi(£2) = (E[,E[,E{)', p2(E2) = E2,
 pi (E3) = (E[,..., E[Y, p2{Ei) = (EĻ EĻ EĻ E'2y and p3(£3) = Ey,

 12

 (ii) P!(A/) = El for I = 1, . . . , 12, Pi (A2) = (E[, E[, E[)' for / = 1, . . . , 4,
 P2(A2) = E2 for I = 1, . . . , 4, which are all difference matrices.

 Remark 4. Theorem 4 provides a method for constructing NOAs and SOAs
 from NDMs. The method can also be applied to generate NOAs and SOAs using
 the NDMs obtained in Theorem 6 in a similar fashion and the details are omitted.

 7. Generation of space-filling designs from NOAs and SOAs. We now dis-
 cuss procedures for using the constructed NOAs and SOAs to generate NSFDs
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 1410 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Table 3

 The array £3 in Example 3, where E' = £3(1 : 4), £2 = £3(1 : 12), A¡ = £3 ([4(/ - 1) -1-1] : 4 1) for
 / = 1, . . . , 12, and A2 = £3([12(/ - 1) + 1] : 12 1) for I = 1, . . . , 4

 Row x' *2 x$ Row x' *2 JC3

 1 0 0 0 25 0 co2 0
 2 0 1 X 26 0 &>2+ 1 jt
 3 O X jc+1 27 0 (o2+x jt+1
 4 0 Jt+1 1 28 0 W2+JC+1 1
 5 0 co 2(o 29 0 cd2+&> 2(l>
 6 O <¿>+1 2&>+jt 30 0 co2+co+ 1 2<W+JC
 7 0 a>+Jt 2w+jc+1 31 0 a)2+o)+x 2<y+jt+l
 8 0 (o+ jc+1 2cd+1 32 O ač+co+x+l 2co+l
 9 0 2co co 33 0 (o2+2(o co
 10 0 2œ+' co+x 34 0 co2 +2(0+1 co+x
 11 0 2(o+x (o+x+l 35 0 (o2+2(o+x (o+x+l
 12 0 2ûM-jc+1 (ü+ 1 36 0 co2+2(o+x+l (o+l
 13 0 0 (o2 37 0 a? a ?
 14 0 1 O>2+JC 38 0 (o2+ 1 <w2+Jt
 15 0 jc <w2+jt+l 39 0 ù)2+x o)2+x+ 1
 16 0 Jt+1 <w2+l 40 0 <W2+JC+1 o)2+'
 17 0 co (o2+2(o 41 0 co2+co (o2+ 2a>
 18 O (Ü+ 1 o)2+2(o+x 42 0 (O2+(L>+ 1 &>2+2<W+JC
 19 0 cd+jc &>2+2&>+jc+1 43 0 (o2+(o+x (o2+2(o+x+'
 20 0 co+x* 1 <w2+2&>+1 44 O (o2+(o+ jc+1 <w2+2o>+1
 21 0 2o> <w2+<w 45 O (o2+2(ü (o2+a>
 22 0 2cl>+1 û;2+û;+jc 46 O (o2+2(o+' cû2+cû+x
 23 O 2<w+Jt a>2+č D+jc+1 47 O &>2+2CD+JC ¿¿>2+<W+JC+1
 24 O 2a>+x+l (ü2+(ú+1 48 O ct)2+2û>+jc+l cû2+cû+ 1

 and SSFDs, respectively. Without loss of generality, we consider generating space-
 filling designs from the NOAs and SOAs in Theorem 1. Similar procedures can be
 carried out for other NOAs and SOAs.

 7.1. Generation of NSFDs. Qian, Tang and Wu (2009) proposed a method for
 generating NSFDs from NOAs with two layers and we extend their idea to generate
 NSFDs with more than two layers. We first introduce the definition of nested per-
 mutation with I layers [Qian (2009)]. Let ZSļ = {0, 1, . . . , Sļ - 1}, we call 7rnp =
 (^np(l)> • • • » ^npC*/)) a nested permutation with I layers on ZSn if the s i elements
 Of (L^np(l)^- A/J , • • • , L^np (si)si /si 1) is a permutation on Z5. = {0, 1, . . . , s¿ - 1}
 for i = 1 where [zi denotes the largest integer no larger than z [Qian
 (2009)]. Note that a necessary and sufficient condition for a 7rnp to be a nest per-
 mutation is that precisely one of its first 57 entries falls within each of the sets de-
 fined by {0 - 1}, {s¡/si,...,2si/si - 1 },..., {(s; - 1 )si/s¡, ...,5/ - 1}
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1411

 for i = 1 . Qian (2009) presented an algorithm for generating nested permu-
 tations with I layers on {1, 2, . . . , s¡], which can be modified to generate nested
 permutations with I layers on Zs, , using the same uniform permutations as in Qian
 (2009). Now we propose an algorithm using this type of permutation to relabel the
 levels of A j and then obtain an NSFD.

 ALGORITHM 3. Step 1. Take an NOA (A', . . . , A¡] p', . . . , Pi) from Theo-

 rem 1 and let 7r„p be a nested permutation with I layers on ZSI, I = 1, . . . , (pk -
 D/(P-1).

 Step 2. Relabel the levels of the /th column of A¡ according to V ( r ) - > ^p(r )
 for r = 1 , ...,s¡, and 1 = 1,..., ( pk - 1 )/(p - 1), where V = ( V(r )) = V77 ©
 Vt¡_¡ © • • • © VY, [note that V is different from the Vf, defined in (4)]. Let M¡ be
 the resulting matrix.

 Step 3. Obtain an OA-based Latin hypercube L¡ from M¡.
 Step 4. Take L¡ to be the submatrix of L¡ consisting of the first sk rows given

 by L¡ = L[( 1 :sk), for i = 1, - 1.

 THEOREM 7. The (Lļ, .... L¡) is an NSFD with I layers, where L¡ not only
 achieves stratification in any one dimension, but also achieves stratification on the
 s¡ X s¡ grids in any two dimensions for i - 1

 Proof. Note that Pj(A¡) is an OA(sf, (pk - 1 )/(p - 1 ),Sj, 2) and the en-

 tries of F¡ are relabeled with the first s¡ entries of 7 r¿p, where precisely one of
 these first s¡ entries falls within each of the s¡ sets defined by {0, . . . , s¡ /s¡ -
 1}, {si/sì, 2 sj/si - 1}, . . . , {(sí - 1 )s[/si, . . . , s¡ - 1}, 1 < ; < i < I and
 / = 1, . . . , ( pk - 1 )/{p - 1). The conclusions now follow. □

 Example 4 (Example 1 continued). Generate three nested permutations

 with three layers = (4,1,2,7,6,5,3,0), 7r„p = (5,2,0,7,3,4,1,6), and
 jr^p = (2, 6, 1, 4, 3, 5, 7, 0) on Z% = {0, . . . , 7}. Note that precisely one of the

 first 2' entries of tt1p falls within each of the 2' sets defined by {0, . . . , 23-' -

 1}, {23-1, . . . , 2 X 23-' - 1}, ... , {(2' - 1)23-' ,^. . , 23 - 1}, /, I = 1, 2, 3. Relabel
 the levels of the Zth column of A3 according to V (r) - > nlap (r), r = 1

 1,2,3, where V = (0, 1,x,jc + l,x2,x2 + l,x2 + x,x2 + x + 1)'. The resulting
 matrix Mļ is given in Table 4. Use M3 to obtain an OA-based Latin hypercube
 Lļ listed in Table 5, and take L' and L2 to be the first four and sixteen rows of
 Lļ, respectively. The bivariate projections among x',x2,xļ of Lļ are plotted in
 Figure 2, where the symbols "+" and "0" denote the points in L', L2 ' L'
 and Lļ ' L2, respectively. The figure indicates that L, achieves stratification on the
 2' x 2' grids in any two dimensions for i = 1, 2, 3.
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 1412 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Table 4

 M3 in Example 4

 Row x' X2 JC3 Row x' X2 *3

 1 4 5 2 33 6 5 3

 2 426 34 625

 3 1 5 6 35 5 5 5

 4 1 2 2 36 5 2 3

 5 4 0 1 37 6 0 7

 6 474 38 670

 7 1 0 4 39 5 0 0

 8 1 7 1 40 5 7 7

 9 2 5 1 41 3 5 7

 10 2 2 4 42 3 2 0

 11 7 5 4 43 0 5 0

 12 7 2 1 44 0 2 7

 13 2 0 2 45 3 0 3

 14 2 7 6 46 3 7 5

 15 7 0 6 47 0 0 5

 16 7 7 2 48 0 7 3

 17 4 3 3 49 6 3 2

 18 4 4 5 50 6 4 6

 19 1 3 5 51 5 3 6

 20 1 4 3 52 5 4 2

 21 4 1 7 53 6 1 1

 22 4 6 0 54 6 6 4

 23 1 1 0 55 5 1 4

 24 1 6 7 56 5 6 1

 25 2 3 7 57 3 3 1

 26 2 4 0 58 3 4 4

 27 7 3 0 59 0 3 4

 28 7 4 7 60 0 4 1

 29 2 1 3 61 3 1 2

 30 2 6 5 62 3 6 6

 31 7 1 5 63 0 1 6

 32 7 6 3 64 0 6 2

 7.2. Generation of SSFDs. Qian and Wu (2009) proposed a method to obtain
 SSFDs from SOAs. Here we present a more flexible procedure that can use the
 SOAs constructed in Sections 4-6 to generate a new class of SSFDs. Without loss
 of generality, consider the SOAs constructed in Theorem 1 .

 Algorithm 4. Step 1. Choose the values of i, j, I, where 1 < j < i < I.

 Suppose A¡ and (rļ, . . . , rļ^ y.; pj) are constructed in Theorem 1. Relabel the
 s j levels of A¡ as 0, . . . , s¡ - 1 according to the following two stages:
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1413

 Table 5

 L3 in Example 4, where L' =£3(1 :4), L2 = Z-3 (1 : 16)

 Row x' xi *3 Row x' *2 X 3

 1 39 44 17 33 51 47 28

 2 38 19 49 34 52 17 41

 3 12 40 50 35 44 46 42

 4 13 18 21 36 46 21 24

 5 34 7 8 37 54 2 62

 6 33 58 33 38 49 62 7

 7 10 5 39 39 43 0 0

 8 11 61 14 40 40 59 58

 9 22 41 9 41 24 42 60

 10 19 20 34 42 25 22 2

 11 60 45 36 43 2 43 1

 12 59 16 15 44 6 23 61

 13 23 4 23 45 30 1 30

 14 17 60 51 46 29 56 43

 15 61 3 52 47 5 6 40

 16 58 57 20 48 4 63 26

 17 35 28 27 49 53 31 16

 18 36 32 45 50 50 38 53

 19 8 25 46 51 47 27 48

 20 14 35 29 52 41 36 22

 21 32 9 63 53 55 13 10

 22 37 52 3 54 48 48 35

 23 9 15 6 55 45 11 37

 24 15 51 59 56 42 50 13

 25 16 30 56 57 27 24 12

 26 20 37 4 58 26 39 38

 27 62 26 5 59 3 29 32

 28 57 33 57 60 7 34 11

 29 18 8 31 61 28 10 19

 30 21 49 47 62 31 55 55

 31 56 14 44 63 1 12 54

 32 63 53 25 64 0 54 18

 (i) Use the projection pj defined in (8) to divide the s¡ levels into s j groups

 = {y'P](y) = «. Y € F]) for a € Fj,

 each of size q = s¡/sj.
 (ii) Arbitrarily label the sj groups as groups 1, . . . , sj, and label the q levels
 within the gth group as (, g - 1 )q, (g - l)q + 1, . . . , gq - 1, for g = 1, . . . , sj. This
 relabeling scheme can be denoted by

 (15) {4>¿|a 6 Fj] - ► A-7 = {A¿| g = 1, . . . ,SJ],

This content downloaded from 
�����������219.217.38.219 on Mon, 20 Nov 2023 02:48:07 +00:00����������� 

All use subject to https://about.jstor.org/terms



 1414 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Fig. 2. Bivariate projections among jq ,Xļ,Xļ ofLļ in Example 4.

 where AJg = {(g - l)ç, (g - l)q + 1, . . . , gq - 1| q = s¡/sj}.

 Step 2. Let M be the design obtained by relabeling the levels of A¡, and use M
 to obtain an OA-based Latin hypercube S .

 Step 3. Partition S into ( s¡/s¡)k subarrays corresponding to Tļ, . . . ,

 that is ,S = (S[,..., SĻ/s.)ky with Si = S ([(I - 1)4 + 1] : 1st), l = í,..., (Sl'/s¡)k.

 THEOREM 8. For S = (S{, constructed in Algorithm 4, S
 achieves stratification on the s / x s¡ grids in any two dimensions , and 5/ achieves

 stratification on the s j x sj grids in any two dimensions for I = 1, . . . , (sļ /sļ)k.
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1415

 Thus, S = (S', , . . . , S(s¡/s .)*)' an SSFD with ( s¡/s¡)k slices.

 PROOF. By noting that A¡ and Pj{T') for / = 1, . . . , ( s¡/s¡)k are all orthog-
 onal arrays of strength two, and following the relabeling scheme given above, the
 conclusions hold. □

 Example 5 (Example 1 continued), (i) For i = j = 1, we have q = 4, 0¿ =
 (ylPiCy) = 0, y s ^3} = {0, x2,x,x2 + x}, 4>j = {l,x2 + l,x + l,x2 + X +
 1}, A* = {0, 1, 2, 3} and Aj = {4, 5, 6, 7}. Arbitrarily relabel the levels of A3 in
 Table 1 according to the scheme given in Step 1 as follows:

 {{0,x2,x, x2 + *}, [l,x2 + 1,* + ' ,x2 + * + 1}} - ► {{0, 1,2, 3}, {4, 5, 6, 7}},

 and then obtain an OA-based Latin hypercube S. Let S¡ = S([4(/ - 1) + 1] : 4/), I =
 1, . . . , 16. Note that S achieves stratification on the 8 x 8 grids in any two dimen-
 sions, S¡ achieves stratification on the 2 x 2 grids in any two dimensions, and
 5 = (Sj , . . . , is an SSFD with 16 slices.

 (ii) For i = j = 2, we have <7 = 2, <t>Q = {0, x2}, O2 = [x, x2 + x}, <ī>ļ =
 {',x2 + '}, i>2+1 = {x + 1, x2 + x + 1}, A2 = {0, 1}, A2 = {2, 3}, A2 = {4, 5} and
 A4 = {6, 7}. Relabel the levels of A3 according to

 {{0, x2}, {x,x2 + x}, {l,x2 + 1}, {x + l,x2 + x + 1}}

 - ► {{0, 1}, {2, 3}, {4, 5}, {6, 7}},

 to obtain an OA-based Latin hypercube S = (S[, , S'4)', where 5/ = 5([16(/ -
 1) + 1] : 16/), / = 1, . . . , 4. Similarly, S achieves stratification on the 8 x 8 grids
 in any two dimensions, S¡ achieves stratification on the 4 x 4 grids in any two
 dimensions, and S - (S[, . . . , S'4)' is an SSFD with 4 slices.

 Remark 5. If we relabel the levels of A3 according to

 {{0, x2}, {x,x2 +x}} - »• {{0, 1}, {2, 3}} and
 (16)

 {{l,x2 + 1}, {x + l,x2+x + 1}} - > {{4, 5}, {6, 7}},

 in Example 5, then by Theorem 8, we have:

 (a) S can be partitioned into 16 slices, S([4(l - 1) + 1] : 4/) for / = 1, . . . , 16,
 each of which achieves stratification on the 2 x 2 grids in any two dimensions;

 (b) S can be partitioned into 4 slices, S([16(/ - 1) + 1] : 16/) for / = 1, . . . , 4,
 each of which achieves stratification on the 4 x 4 grids in any two dimensions;

 (c) S achieves stratification on the 8 x 8 grids in any two dimensions;
 (d) S is an SSFD that can be sliced into 4 or 16 slices.

 Therefore, under the same relabel scheme (16), S can be used to conduct com-
 puter experiments with qualitative factors of 4 and 16 distinct level combinations,
 respectively. A further discussion on S will be found in Example 6.
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 1416 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Inspired by Remark 5, we now propose a new construction of SSFDs from SOAs
 which can generate SSFDs with different numbers of slices simultaneously. A new
 permutation is needed. We call jrsp = (7rsp(l), . . . , n sp(s/)) a sliced permutation
 with I layers on ZSl, if

 {7Tsp((g - 1 )q + 1), 7Tsp((g -l)q + 2),..., 7Tsp(gtf)} e AJ

 for j = 1, . . . , / - 1, g = 1, . . . , sj and q = s¡/sj, where A-7 is defined in (15).

 Algorithm 5. Step 1. Suppose A¡ is constructed in Theorem 1 and 7r'p is a
 sliced permutation with / layers on zsi, i = l, . . . , ( pk - 1 )/o - 1).

 Step 2. Relabel the levels of the /th column of A¡ according to VF¡(r) - >
 7tlsp(r) for r = 1, . . . , s¡, and / = l,...,(pk - 1 )/(p - 1), where Vp, = W, ©
 Vt2 © • • • © Vt, defined in (4). Let M be the resulting matrix.

 Step 3. Obtain an OA-based Latin hypercube S from M .
 Step 4. For i = 1, - 1, partition S into ( si/si)k subarrays with an equal

 number of rows, that is, S = ((51)', . . . , (5^^ ^)')' with Sļ = S([(l - l)s¡ +
 1]:/Sf) for / = 1,...,(S/ /*,)*.

 THEOREM 9. For S = ((5j)', ...,(5|í;^^)')' constructed in Algorithm 5,
 Sj achieves stratification on the Sj x sj grids in any two dimensions, for I =
 1, . . . , (s[/s¡)k and 1 < j <i < I. Thus, S = ((51)', . . . , is an SSFD
 with ( S[/Si)k slices, for i = 1, ...,/ - 1.

 Proof. For any a e F¡, let ai denote the corresponding element in 7rs'p under

 the relabeling Vf, - > tvĻ, 1 = 1,..., (pk - 1 )/(p - 1). Since A¡ and Pj(rj) for
 / = 1 , . . . , (i/ /si)k and 1 < j < i < I - 1 are all orthogonal arrays of strength two,
 it suffices to prove that for any a, ß e Fj with a ^ ß, ai and ßi fall in different sets
 defined by {0, 1, . . . ,q - 1}, [q,q + 1, ..., 2q - 1}, ..., {(sy- - 1)^, ( sj - 1 )q +
 1, . . . , sjq - 1}, where q = sj/sj. Note that Vf, = VY, © Vj2 © • • • © Vt, = V>y ©
 (VV7+i © • • • © V77) and the first element of Vt¡ is 0, i = 1, ... , I, then a, ß e
 {Vf/(g)|g = l,q + l,2q + l,...,(sj-l)q + 1}. Suppose a = VFAc'q + l),ß =
 VF¡(c2q + 1), c', C2 = 0, 1, . . . , Sj - 1, and c' # C2. Then a¡ = nlp(ciq + 1) and

 ßl = 7t'p(c2<7 + 1) and, therefore, a¡ e AJdļ , ßi e A¿2 for some d',dļ= 1,2, ... ,Sj
 and d' ^ ¿2 (this is because '{c'q + 1) - ( C2q + 1)| = |(ci - cz)q' > q), and
 ai and ßi fall in different sets defined by {0, 1, . . . , q - 1}, [q, q + 1, . . . , 2q -
 lj, . . . , {(s; - 1 )q, ( Sj -l)q + l,..., sjq - 1}. □

 Example 6 (Example 1 continued). Generate three sliced permutations
 with three layers jrSp = (0, 1, 2, 3, 7, 6, 5, 4), jcĶ = (7, 6, 5, 4, 1, 0, 2, 3) and 7rs3p =
 (0, 1, 3, 2, 4, 5, 7, 6) on Z%. Note that

 {7tĻ(r23~j + 1), . . . , j rjp((r + 1)23"^)} 6 A-*
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1417

 FIG. 3. Bivariate projections among x', Xļ and Xļ of S in Example 6.

 for r = 0, 1, . . . , V - 1 and j = 1, 2, where A1 = {{0, 1, 2, 3}, {4, 5, 6, 7}} and
 A2 = {{0, 1}, [2, 3}, {4, 5}, {6, 7}}. Relabel the levels of the Ith column of A3 ac-

 cording to Vp, ( r ) - > tīĻ (r), r = 1, . . . , 8, 1 = 1, 2, 3, where Vp¡ = {0, x2, x,x +
 X2, 1, X2 + 1, X + 1, X + X2 + 1}. Denote the resulting matrix by M in Table 6,
 and use M to obtain an OA-based Latin hypercube S given in columns xi,xļ
 and xt, in Table 8. Note thàt S([4'(/ - 1) + 1] :4'/) achieves stratification on the
 2' x 2' grids in any two dimensions for / = 1, 2, . . . , 43-' and i = 1,2; see Fig-
 ure 3 for an illustration, where for brevity, we only plot the bivariate projections of
 S([16(/ - 1) + 1] : 16/) for I = 1, . . . , 4.

 The design in Table 8 consists of two parts: the SSFD S (columns xi,x2,xļ)
 obtained in Example 6 for arranging quantitative factors, and an OA( 16, 2343) with
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 1418 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Table 6

 The array M in Example 6

 Row x' X2 *3 Row x' X2 *3

 1 0 7 0 33 1 7 1

 2 0 1 4 34 1 1 5

 3 774 35 675

 4 7 1 0 36 6 1 1

 5 0 5 3 37 1 5 2

 6 0 2 7 38 1 2 6

 7 757 39 656

 8 723 40 622

 9 273 41 372

 10 2 1 7 42 3 1 6

 11 5 7 7 43 4 7 6

 12 5 1 3 44 4 1 2

 13 2 5 0 45 3 5 1

 14 2 2 4 46 3 2 5

 15 5 5 4 47 4 5 5

 16 5 2 0 48 4 2 1

 17 0 6 1 49 1 6 0

 18 0 0 5 50 1 0 4

 19 7 6 5 51 6 6 4

 20 7 0 1 52 6 0 0

 21 0 4 2 53 1 4 3

 22 0 3 6 54 1 3 7

 23 7 4 6 55 6 4 7

 24 7 3 2 56 6 3 3

 25 2 6 2 57 3 6 3

 26 2 0 6 58 3 0 7

 27 5 6 6 59 4 6 7

 28 5 0 2 60 4 0 3

 29 2 4 1 61 3 4 0

 30 2 3 5 62 3 3 4

 31 5 4 5 63 4 4 4

 32 5 3 1 64 4 3 0

 replicate runs (the last six columns) for arranging qualitative factors, where the
 original OA{ 16, 2343) is listed in Table 7. Note that S possesses properties: (i) if
 S is partitioned into 4 slices with 16 runs in each slice, then each slice achieves
 stratification on the 4 x 4 grids in any two dimensions; (ii) if S is partitioned into 16
 slices with 4 runs in each slice, then each slice achieves stratification on the 2 x 2

 grids in any two dimensions. Therefore, for the design in Table 8, (i) for any level
 combination of the three two-level qualitative factors, the design points for the
 quantitative factors achieve stratification on the 4 x 4 grids in any two dimensions;
 (ii) for any level combination of the three four-level qualitative factors, the design

This content downloaded from 
�����������219.217.38.219 on Mon, 20 Nov 2023 02:48:07 +00:00����������� 

All use subject to https://about.jstor.org/terms



 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1419

 Table 7

 04(16, 2343,2)

 1 2 3 4 5 6

 0 0 0 0 0 0

 0 0 0 0 3 3

 0 0 0 3 1 2

 0 0 0 3 2 1

 0 112 0 2

 0 112 3 1

 0 1112 3

 0 11110

 10 12 2 0

 10 12 13

 10 110 1

 10 113 2

 1 1 0 0 2 2

 110 0 11

 1 1 0 3 0 3

 1 1 0 3 3 0

 points for the quantitative factors achieve stratification on the 2 x 2 grids in any two
 dimensions; (iii) it possesses good space-filling properties when collapsed over
 the qualitative factors. Hence, the design in Table 8 is suitable for conducting a
 computer experiment with three quantitative factors and six qualitative factors,
 where three of them have 2 levels and another three have 4 levels.

 We have provided some new constructions of NSFDs and SSFDs based on
 NOAs and SOAs of strength two, respectively. Better NSFDs and SSFDs can be
 obtained by using NOAs and SOAs with strength greater than two. See Remarks 1
 and 2, Theorems 3 and 5 and Corollary 2.

 8. Comparisons and concluding remarks. The families of NSFDs con-
 structed by the existing methods are limited to two layers, with the exception of
 Haaland and Qian (2010). The method of Haaland and Qian (2010) is based on
 the infinite (/, s)-sequences which are more difficult to obtain than the orthogonal
 arrays used in our methods. Here are some comparisons between our methods and
 the existing constructions.

 Qian, Tang and Wu (2009) (QTW) and Qian, Ai and Wu (2009) (QAW) pre-
 sented several methods for constructing NSFDs with two layers from NOAs and
 NDMs. NSFDs with more than two layers cannot be constructed by using their
 methods. The technical reason is that the modulus projection used in Qian, Tang
 and Wu (2009) cannot be extended to covering more than two layers, as argued
 in Section 3.2. The subgroup projection presented in this paper is different and
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 1420 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Table 8

 Design with qualitative and quantitative factors , where columns x' , X2, *3 are quantitative ones ,
 *4, X5, ^6 are 2-level qualitative ones , and *7, xg, *9 are 4-level qualitative ones

 Row xi x2 *3 *4 x5 *6 x7 JCg JC9

 1 1 63 3000000

 2 3 13 37 000000

 3 60 61 32 0 0 0 0 0 0

 4 62 12 0000000

 5 4 47 31 000033

 6 0 23 57 000033

 7 56 42 62 0 0 0 0 3 3

 8 61 17 29 0 0 0 0 3 3

 9 18 59 24 0 0 0 3 1 2

 10 19 10 63 0 0 0 3 1 2

 11 40 57 60 0 0 0 3 1 2

 12 42 11 30 0 0 0 3 1 2

 13 17 43 7 0 0 0 3 2 1

 14 22 20 34 0 0 0 3 2 1

 15 46 40 36 0 0 0 3 2 1

 16 44 22 6 0 0 0 3 2 1

 17 5 51 9 0 1 1 2 0 2

 18 2 0 41 0 1 1 2 0 2

 19 58 52 42 0 1 1 2 0 2

 20 57 4 15 0 1 1 2 0 2

 21 6 37 18 0 1 1 2 3 1

 22 7 29 54 0 1 1 2 3 1

 23 63 34 49 0 1 1 2 3 1

 24 59 25 17 0 1 1 2 3 1

 25 21 53 21 0 1 1 1 2 3

 26 20 6 48 0 1 1 1 2 3

 27 41 48 55 0 1 1 1 2 3

 28 45 5 23 0 1 1 1 2 3

 29 23 36 8 0 1 1 1 1 0

 30 16 26 45 0 1 1 1 1 0

 31 47 39 43 0 1 1 1 1 0

 32 43 24 10 0 1 1 1 1 0

 33 9 58 11 1 0 1 2 2 0
 34 10 8 40 1 0 1 2 2 0

 35 53 56 44 1 0 1 2 2 0
 36 54 15 14 1 0 1 2 2 0
 37 15 41 22 1 0 1 2 1 3
 38 13 21 50 1 0 1 2 1 3
 39 48 46 51 1 0 1 2 1 3
 40 52 16 16 1 0 1 2 1 3
 41 27 62 20 1 0 1 1 0 1
 42 30 14 52 1 0 1 1 0 1
 43 33 60 53 1 0 1 1 0 1
 44 32 9 19 1 0 1 1 0 1
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1421

 Table 8

 (Continued)

 Row *1 X2 *3 *4 *5 *6 x7 x8 x9

 45 25 44 13 1 0 1 1 3 2

 46 31 19 46 1 0 1 1 3 2

 47 37 45 47 1 0 1 1 3 2

 48 39 18 12 1 0 1 1 3 2

 49 11 49 1 1 1 0 0 2 2

 50 8 1 33 1 1 0 0 2 2

 51 49 54 38 1 1 0 0 2 2

 52 50 7 5 1 1 0 0 2 2

 53 14 33 27 1 1 0 0 1 1

 54 12 27 61 1 1 0 0 1 1

 55 51 32 59 1 1 0 0 1 1

 56 55 28 25 1 1 0 0 1 1

 57 24 55 26 1 1 0 3 0 3
 58 29 2 56 1 1 0 3 0 3

 59 34 50 58 1 1 0 3 0 3

 60 38 3 28 1 1 0 3 0 3
 61 28 38 2 1 1 0 3 3 0
 62 26 30 35 1 1 0 3 3 0

 63 35 35 39 1 1 0 3 3 0

 64 36 31 4 1 1 0 3 3 0

 more general, and it has been used to generate more NSFDs which can accom-
 modate nesting with an arbitrary number of layers and are more flexible in run
 size. Qian and Ai (2010) (QA) proposed some construction methods for NOAs
 and NDMs with two layers based on Galois fields and incomplete pairwise or-
 thogonal Latin squares. Qian (2009) presented a method for constructing nested
 Latin hypercube designs, but the resulting designs can achieve stratification only
 in one dimension. Thus, we only present the comparisons among QTW, QAW,
 QA and our proposed methods (SLQ). The comparison among QAW, QA and
 SLQ for the construction of NDMs with two layers, and the comparison among
 QTW, QAW, QA and SLQ for the construction of NOAs with two layers, are
 listed in Tables 9 and 10, respectively. Since the construction of incomplete pair-
 wise orthogonal Latin squares is still an open problem, thus we only tabulate
 the results obtained based on Galois fields in QA. In addition, QAW and the
 present paper presented several indirect methods to obtain NOAs based on ex-
 isting NOAs or NDMs, for example, Theorems 4, 5 in QAW and Theorem 4 in
 the present paper. In Tables 9 and 10, we only tabulate the NOAs and NDMs
 that can be directly constructed. Moreover, Tables 11 and 12 tabulate some con-
 struction results of the proposed methods for designs with more than two lay-
 ers.
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 1422 F. SUN, M.-Q. LIU AND P. Z. G. QIAN

 Table 9

 Comparisons among the NDM(D' , D; p', P2) 's constructed by QAW, QA and SLQ

 He

 Methods Pi(Di) D Constraints

 QAW I D(pm,p2,pm) D(pm+l,p2,pm+i) m>2
 II D(pm,p2,pm) D(pm+2,p2,pm+2) p = 2,3
 III D(pm+l,p3,pm) D(pm+2,p3,pm+2)
 IV D(pm+l , p3 , pm) D(pm+3 , p3 , pm+3)
 V £>(pm+2,p4,pm) D(pm+3, p4, pm+3)

 QA D{pUi , p"1 , p"1) D(pU2,pUi,p"i) uļ<u2,uļ'u2

 SLQ Theorem 4 D(lp"2 , p"' p»2) D(pu*, pu< , p"i) k,|ki+1>( = 1,2,
 «2 < W3, / <

 Theorem 6 D(/rj , c, /?Ml) D(rjr2, c, pMl+"2) D (r¿, c, /?"' ) exists,
 i = 1 , 2, / < /*2

 */? is any prime number.

 From these tables and our construction methods, we can see that:

 (i) The proposed methods have more flexible choices of the parameters, and
 thus can generate much more new NDMs and NOAs, hence much more new
 NSFDs.

 Table 10

 Comparisons among the NOA{A', A' p', pj) 's constructed by QTW, QAW, QA and SLQ

 ¡ķ

 Methods P'(A') A Constraints

 QTW 04(/"i,^¡^,/7"i,2) OA(pku'^l,p"'2) 2ui<u2+l
 QAW OA(Sļ, 3, s', 2) OA(52, 3, ^2, 2) Sļ < ¿2> |¿2

 QA I OA(pku>,l¡^,pu>,2) 04(p*"2,£^,p"2,2) ttl<«2,"il«2
 II OA(pkui , pUx + 1, pUl , k) OA(pku2, pU{ + 1, pU2,k) «I < u2, «i |«2<

 pui >k- 1

 SLQ Theorem 1 OA(lpkUi , pUi , 2) OA(pkui, p"2, 2) / < p*(" 2""i),
 Wļ < «2

 Theorem 2 OA(lpku¡ , p"1 , 2) OA(pk"i, , p"2, 2) / < p*<"2-"i>,
 u' < U2, U''U2

 Theorem 3 OA(lpku< , p"' + 1, p"1 , jfc) OA(pk"2, pUi + l,pU2,k) I < p*(«2-«i) , Mļ < «2'

 Ml |«2, p"1 >*- 1
 Theorem 5 OA(/«| , m, p"1 , f) OA(n'ri2, m, /?"i+"2, ř) OA(n¿, m, pUi , ř) exists,

 i = 1, 2, / < /*2

 */7 is any prime number.
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 CONSTRUCTION OF NESTED SPACE-FILLING DESIGNS 1 423

 Table 1 1

 The NDM(D' , . . . , Dj' p', . . . , p¡)'s constructed in this paper for / > 2

 Methods pi(D¿), i = 1, . . . , / Constraints

 Theorem 4 D(pUi , pU{ , pUi) u¿ < m;+i, w;|w/+i, / = 1, - 1

 Theorem 6 D(YYi=' rh P^l=x Ul) D(rļ , c, pUi) exists, / = 1, /

 * p is any prime number.

 (ii) For NSFDs with two layers, some of the construction results of QTW,
 QAW and QA can also be obtained by the proposed methods. For example, in
 Table 9, by taking / = 1, p = 2, 3, u' = ra, U2 = 2, r' - pm, and r2 = c = p 2, then
 the NDMs obtained by our Theorem 6 are just those constructed by II of QAW. In
 addition, most of the NOAs and NDMs obtained by the proposed methods have no
 overlap with that of QTW, QAW and QA.

 (iii) The proposed methods can generate various NDMs and NOAs with more
 than two layers; see Tables 1 1 and 12.

 (iv) Moreover, the methods for obtaining NOAs can also be used to generate
 SOAs after some suitable modifications, which are useful for constructing SSFDs
 for computer experiments with both qualitative and quantitative factors [Qian and
 Wu (2009)].

 The newly proposed methods are easy to implement. The generated NSFDs and
 SSFDs can be used not only in computer experiments, but also in many other fields
 as mentioned in Section 1.

 Acknowledgments. The authors thank the Editor, the Associate Editor and
 two referees for their comments, which have led to improvements in the paper.

 Table 12

 The NOA(A , Aļ' p', . . . , p¡)'s constructed in this paper for / > 2

 Methods /o¿ (A,), i = 1, . . . , / Constraints*

 Theorem 1 OA(pkUi , ^=T' Z7"' ' 2) ui < "/+ M = 1, •••,/- 1
 Theorem 2 OA(pkui , ppu¡Z¡ > PU[ > 2) < m;+i, i = 1, 1
 Theorem 3 OA(pkUi , pUi + 1, pUi , k) pUi > k - 1, w; < k/+i,

 / = 1, - 1

 Corollary 2 OA(Y['=' ni,m, p^i= i M/, t) OA(nļ, m, /?"' , í) exists, i = 1, . . . , /

 * p is any prime number.
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